题目内容

11.如图,分别以Rt△ABC的斜边AB,直角边AC为边向形外作等边△ABD和等边△ACE,F为AB 的中点.DE与AB相交于G,若∠BAC=30°,下列结论?:EF⊥AC;?AD=AE;?AD=4AG;?△DBF≌△EFA中,正确的有(  )个.
A.1个B.2个C.3个D.4个

分析 根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形,根据平行四边形的性质得出AD=4AG,从而得到答案.

解答 解:∵△ACE是等边三角形,
∴∠EAC=60°,AE=AC,
∵∠BAC=30°,
∴∠FAE=∠ACB=90°,AB=2BC,
∵F为AB的中点,
∴AB=2AF,
∴BC=AF,
∴△ABC≌△EFA,
∴FE=AB
∴∠AEF=∠BAC=30°,
∴EF⊥AC,故①正确,
∵EF⊥AC,∠ACB=90°,
∴HF∥BC,
∵F是AB的中点,
∴HF=$\frac{1}{2}$BC,
∵BC=$\frac{1}{2}$AB,AB=BD,
∴HF=$\frac{1}{2}$BD;
∵AD=BD,BF=AF,
∴∠DFB=90°,∠BDF=30°,
∵∠FAE=∠BAC+∠CAE=90°,
∴∠DFB=∠EAF,
∵EF⊥AC,
∴∠AEF=30°,
∴∠BDF=∠AEF,
∴△DBF≌△EFA(AAS),故④正确;
∴AE=DF,
∵FE=AB,
∴四边形ADFE为平行四边形,
∴AD≠AE,;
故②说法不正确;
∴AG=$\frac{1}{2}$AF,
∴AG=$\frac{1}{4}$AB,
∵AD=AB,
则AD=4AG,故③说法正确,
正确的有3个,
故选:C.

点评 本题考查了菱形的判定和性质,以及全等三角形的判定和性质,解决本题的关键是需先根据已知条件先判断出一对全等三角形,然后按排除法来进行选择.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网