题目内容

16.已知二元一次方程组$\left\{\begin{array}{l}{ax+by=7}\\{bx-ay=5}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$,求4a-3b的值.

分析 首先把$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$代入$\left\{\begin{array}{l}{ax+by=7}\\{bx-ay=5}\end{array}\right.$得关于a、b的方程组,解方程组可得a、b的值,进而可得4a-3b的值.

解答 解:把$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$代入$\left\{\begin{array}{l}{ax+by=7}\\{bx-ay=5}\end{array}\right.$得:$\left\{\begin{array}{l}{a-2b=7}\\{b+2a=5}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=\frac{17}{5}}\\{b=-\frac{9}{5}}\end{array}\right.$,
4a-3b=4×$\frac{17}{5}$+3×$\frac{9}{5}$=19.

点评 此题主要考查了二元一次方程组的解,关键是掌握二元一次方程组的解能同时是两个方程成立.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网