题目内容

15.如图△ABC中,D、E分别是AB、AC中点,过E作EF∥AB交BC于F.
(1)求证:四边形DBFE为平行四边形;
(2)当△ABC满足什么条件时,四边形DBFE为菱形,请说明理由.

分析 (1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;
(2)根据邻边相等的平行四边形是菱形,得出BD=BF,推出AB=BC即可.

解答 (1)证明:∵D、E分别是AB、AC的中点,
∴DE是△ABC的中位线,
∴DE∥BC,
又∵EF∥AB,
∴四边形DBFE是平行四边形;

(2)解:当AB=BC时,四边形DBFE是菱形.
理由如下:∵D是AB的中点,
∴BD=$\frac{1}{2}$AB,
∵DE是△ABC的中位线,
∴DE=$\frac{1}{2}$BC,
∵AB=BC,
∴BD=DE,
又∵四边形DBFE是平行四边形,
∴四边形DBFE是菱形.

点评 本题考查了三角形的中位线定理,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网