题目内容

13.如图,AB是⊙O的直径,BC是弦,连结OC,过点C的切线交BA的延长线于点D,若OC=CD=2,则$\widehat{BC}$的长是$\frac{3π}{2}$.(结果保留π)

分析 根据切线的性质和OC=CD证得△OCD是等腰直角三角形,证得∠COB=135°,然后根据弧长公式求得即可.

解答 解:∵CD是⊙O的切线,
∴OC⊥CD,
∵OC=CD=2,
∴△OCD是等腰直角三角形,
∴∠COD=45°,
∴∠COB=135°,
∴$\widehat{BC}$的长=$\frac{135π×2}{180}$=$\frac{3π}{2}$.
故答案为$\frac{3π}{2}$.

点评 本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,切线的性质的应用是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网