题目内容
如图,直线l:y=-x-3与直线y=a(a为常数)的交点在第四象限,则a可能在( )
A. 1<a<2 B. -2<a<0 C. -3≤a≤-2 D. -10<a<-4
如图,矩形AOBC,A(0,6)、B(12,0),点E在OB上,∠AEO=30°,点P从点Q(﹣4,0)出发,沿x轴向右以每秒1个单位长的速度运动,运动时间为t秒.
(1)求点E的坐标;
(2)若⊙D与三角形AOE的三边相切,切点分别为N、M、F,求⊙D的半径;
(3)以点P为圆心,PA为半径的⊙P随点P的运动而变化,当⊙P与四边形AEBC的边(或边所在的直线)相切时,求t的值.
用配方法解一元二次方程,则方程可化为 ( )
A. B.
C. D.
如图,在△ABC中,点D,E,F分别是△ABC的边AB,BC,AC上的点,且DE∥AC,EF∥AB,要使四边形ADEF是正方形,还需添加条件:__________________.
如图,四边形ABCD是正方形,F是CB延长线上一点,E是CD上一点,若△AFB绕点A按逆时针方向旋转θ度后与△AED重合,则θ的值为( )
A. 90 B. 60 C. 45 D. 30
猜想与证明:如图①摆放矩形纸片ABCD与矩形纸片ECGF,使B,C,G三点在一条直线上,CE在边CD上.连结AF,若M为AF的中点,连结DM,ME,试猜想DM与ME的数量关系,并证明你的结论.
拓展与延伸:
(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为__________________;
(2)如图②摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]
①②
两个反比例函数C1:y=和C2:y=在第一象限内的图象如图所示,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为________.
如图,E是?ABCD的一边AD上任意一点,若△EBC的面积为S1,?ABCD的面积为S,则下列S与S1的大小关系中正确的是( )
A. S1=S B. S1<S C. S1>S D. 无法确定
若分式的值为负数,则x的取值范围是________.