题目内容

如图,已知过A、C、D三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,如果∠A=57°,那么∠ABC=
 
°.
考点:圆周角定理
专题:计算题
分析:连接EC、ED,如图,设∠B=x,根据等腰三角形的性质由EA=EC得∠A=∠ACE,再根据三角形内角和定理得到∠4=180°-2∠A=66°,而DB=DE,则∠1=∠B=x,利用三角形外角性质得∠2=∠1+∠B=2x,再利用EC=ED得到∠3=∠2=2x,然后根据三角形外角性质得到2x+x=66°,即得x=22°.
解答:解:连接EC、ED,如图,设∠B=x,
∵EA=EC,
∴∠A=∠ACE,
∴∠4=180°-2∠A=180°-2×57°=66°,
∵DB=DE,
∴∠1=∠B=x,
∴∠2=∠1+∠B=2x,
而EC=ED,
∴∠3=∠2=2x,
∵∠4=∠3+∠B,
∴2x+x=66°,即得x=22°,
即∠ABC=22°.
故答案为22.
点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网