ÌâÄ¿ÄÚÈÝ

15£®Èçͼ1£¬¾ØÐÎOABCµÄ±ßOA¡¢OC·Ö±ðÔÚ×ø±êÖáÉÏ£¬Bµã×ø±ê£¨1£¬$\sqrt{3}$£©£¬¾ØÐÎO¡äA¡äB¡äC¡äÊǾØÐÎOABCÈÆBµãÄæÊ±ÕëÐýתµÃµ½µÄ£¬O¡äµãÇ¡ºÃÔÚxÖáµÄ×ø±êÖáÉÏ£¬O¡äA¡ä½»BCÓÚµãD£®

£¨1£©Ö±½ÓÌî¿Õ£º¢ÙO¡äµÄ×ø±êΪ£¨2£¬0£©£»¢Ú¡÷O¡äDBµÄÐÎ×´ÊǵÈÑüÈý½ÇÐΣ»
£¨2£©Èçͼ2£¬Á¬½ÓO¡äB½«¡÷O¡äBC¡äÑØxÖḺ°ëÖáÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÏò×óÆ½ÒÆ£¬µÃµ½¡÷O¡äB¡äC¡ä£¬µ±C¡äÔ˶¯µ½yÖáÉÏÊ±Í£Ö¹Æ½ÒÆ£®Éè¡÷O¡äB¡äC¡äÓë¾ØÐÎOABCÖØµþ²¿·ÖµÄÃæ»ýΪS£¬Ô˶¯Ê±¼äΪtÃ루t£¾0£©£¬ÇëÖ±½Óд³öSÓëtµÄº¯Êý¹ØÏµÊ½£¬²¢Ð´³ötµÄȡֵ·¶Î§£»
£¨3£©Èçͼ3£¬ÑÓ³¤BCµ½µãM£¬Ê¹CM=1£¬ÔÚÖ±ÏßA¡äO¡äÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃ¡÷POMÊÇÒÔÏß¶ÎOMΪֱ½Ç±ßµÄÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÇó³öPµã×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝµÈÑüÈý½ÇÐÎÈýÏߺÏÒ»ÒÔ¼°È«µÈÈý½ÇÐεÄÐÔÖʼ´¿É½â¾öÎÊÌ⣮
£¨2£©·ÖËÄÖÖÇéÐΣ©¢ÙÈçͼ2ÖУ¬µ±0£¼t¡Ü1ʱ£¬Öصþ²¿·ÖÊÇ¡÷MNB¡ä£¬¢ÚÈçͼ3ÖУ¬µ±1£¼t$¡Ü\frac{3}{2}$ʱ£¬Öصþ²¿·ÖÊÇÎå±ßÐÎMNHGO¡ä£¬¢ÛÈçͼ4ÖУ¬µ±$\frac{3}{2}$£¼t¡Ü2ʱ£¬Öصþ²¿·ÖÊÇËıßÐÎMNC¡äO¡ä£¬¢ÜÈçͼ5ÖУ¬µ±2£¼t¡Ü$\frac{5}{2}$ʱ£¬Öصþ²¿·ÖÊÇ¡÷MNC¡ä£¬·Ö±ðÇó½â¼´¿É£®
£¨3£©·ÖÁ½ÖÖÇéÐÎÌÖÂÛ¼´¿ÉÈçͼ6ÖУ¬¢Ùµ±¡ÏPOM=90¡ãʱ£¬¢Úµ±¡ÏOMP¡ä=90¡ãʱ£®

½â´ð ½â£º£¨1£©¢ÙÁ¬½ÓOB¡¢O¡äB£¬
ÔòOB=O¡äB£¬
¡ßËıßÐÎOABC¾ØÐΣ¬
¡àBC¡ÍOC£¬
¡àCO=CO¡ä£¬
¡ßBµã×ø±ê£¨1£¬$\sqrt{3}$£©£¬
¡àOC=1£¬
¡àO¡äC=1£¬
¡àO¡ä£¨2£¬0£©£»
¢ÚÈçͼ1ÖУ¬¡÷O¡äDBÊǵÈÑüÈý½ÇÐΣ¬

ÀíÓÉÊÇ£º¡ß¡ÏA¡ä=¡ÏBCO¡ä=90¡ã£¬¡ÏA¡äDB=¡ÏCDO¡ä£¬A¡äB=O¡äC£¬
¡à¡÷BA¡äD¡Õ¡÷O¡äCD£¬
¡àBD=DO¡ä£¬
¡à¡÷O¡äDBÊǵÈÑüÈý½ÇÐΣ»
¹Ê´ð°¸Îª£¨2£¬0£©£¬µÈÑüÈý½ÇÐΣ®

£¨2£©¢ÙÈçͼ2ÖУ¬µ±0£¼t¡Ü1ʱ£¬Öصþ²¿·ÖÊÇ¡÷MNB¡ä£¬

S=$\frac{1}{2}$¡Á$\frac{2\sqrt{3}}{3}$t•t=$\frac{\sqrt{3}}{3}$t2£®
¢ÚÈçͼ3ÖУ¬µ±1£¼t$¡Ü\frac{3}{2}$ʱ£¬Öصþ²¿·ÖÊÇÎå±ßÐÎMNHGO¡ä£¬

S=S¡÷A¡äO¡äC¡ä-S¡÷A¡äGH-S¡÷MNC¡ä=$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$¡Á2¡Á$\frac{\sqrt{3}}{3}$£¨t-1£©2-$\frac{1}{2}$¡Á[1-2£¨t-2£©]¡Á$\frac{\sqrt{3}}{3}$[1-2£¨t-2£©]=-$\sqrt{3}$t2+4$\sqrt{3}$t-4$\sqrt{3}$£®
¢ÛÈçͼ4ÖУ¬µ±$\frac{3}{2}$£¼t¡Ü2ʱ£¬Öصþ²¿·ÖÊÇËıßÐÎMNC¡äO¡ä£¬

S=S¡÷O¡äB¡äC¡ä-S¡÷MNB¡ä=$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$¡Á2¡Á$\frac{\sqrt{3}}{3}$£¨t-1£©2=-$\frac{\sqrt{3}}{3}$t2+$\frac{2\sqrt{3}}{3}$t+$\frac{\sqrt{3}}{6}$£®
¢ÜÈçͼ5ÖУ¬µ±2£¼t¡Ü$\frac{5}{2}$ʱ£¬Öصþ²¿·ÖÊÇ¡÷MNC¡ä£¬

S=$\frac{1}{2}$¡Á[1-2£¨t-2£©]¡Á$\frac{\sqrt{3}}{3}$[1-2£¨t-2£©]=$\frac{2\sqrt{3}}{3}$t2-$\frac{10\sqrt{3}}{3}$t+$\frac{25\sqrt{3}}{6}$£®
×ÛÉÏËùÊöS=$\left\{\begin{array}{l}{\frac{\sqrt{3}}{3}{t}^{2}}&{£¨0£¼t¡Ü1£©}\\{-\sqrt{3}{t}^{2}+4\sqrt{3}t-4\sqrt{3}}&{£¨1£¼t¡Ü\frac{3}{2}£©}\\{-\frac{\sqrt{3}}{3}{t}^{2}+\frac{2\sqrt{3}}{3}t+\frac{\sqrt{3}}{6}}&{£¨\frac{3}{2}£¼t¡Ü2£©}\\{\frac{2\sqrt{3}}{2}{t}^{2}-\frac{1=\sqrt{3}}{3}t+\frac{25\sqrt{3}}{6}}&{£¨2£¼t¡Ü\frac{5}{2}£©}\end{array}\right.$£®

£¨3£©Èçͼ6ÖУ¬´æÔÚ£®

¢Ùµ±¡ÏPOM=90¡ãʱ£¬¡ßOC=CM=1£¬
¡à¡ÏCOM=45¡ã=¡ÏPOC£¬
¡àÖ±ÏßOP½âÎöʽΪy=x£¬
¡ßÖ±ÏßOAµÄ½âÎöʽΪy=-$\frac{\sqrt{3}}{3}$x+$\frac{2\sqrt{3}}{3}$£¬
ÓÉ$\left\{\begin{array}{l}{y=x}\\{y=-\frac{\sqrt{3}}{3}x+\frac{2\sqrt{3}}{3}}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=\sqrt{3}-1}\\{y=\sqrt{3}-1}\end{array}\right.$£¬
¡àµãP×ø±êΪ£¨$\sqrt{3}$-1£¬$\sqrt{3}$-1£©£®
¢Úµ±¡ÏOMP¡ä=90¡ãʱ£¬Ò×ÖªP¡äÓëO¡äÖØºÏ£¬
´ËʱµãP¡ä×ø±ê£¨2£¬0£©£¬
×ÛÉÏËùÊöµãP×ø±êΪ£¨2£¬0£©»ò£¨$\sqrt{3}$-1£¬$\sqrt{3}$-1£©£®

µãÆÀ ±¾Ì⿼²éËıßÐÎ×ÛºÏÌ⡢ȫµÈÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Ò»´Îº¯Êý¡¢¾ØÐεÄÐÔÖÊ¡¢µÈÑüÈý½ÇÐεÄÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»á»­ºÃͼÐΣ¬Ñ§»á·ÖÀàÌÖÂÛ£¬×¢Òâ×Ô±äÁ¿µÄȡֵ·¶Î§£¬²»ÄÜ©½â£¬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø