题目内容

18.如图所示,已知AE⊥AB,△ACE≌△AFB,CE、AB、BF分别交于点D、M.证明:CE⊥BF.

分析 先利用垂直定义得到∠BAE=90°,在利用三角形全等的性质得∠CAE=∠BAF,∠ACE=∠F,则∠CAF=∠BAE=90°,然后根据三角形内角和定理易得∠FMC=∠CAF=90°,然后根据垂直的定义即可得到结论.

解答 证明:∵AE⊥AB,
∴∠BAE=90°,
∵△ACE≌△AFB,
∴∠CAE=∠BAF,∠ACE=∠F,
∴∠CBA+∠BAE=∠BAC+∠CAF,
∴∠CAF=∠BAE=90°,
而∠ACE=∠F,
∴∠FMC=∠CAF=90°,
∴CE⊥BF.

点评 本题考查了全等三角形的性质:全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网