题目内容

在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.

(1)记抛物线顶点为D,求△BCD的面积;

(2)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.

(1)3 (2)<b≤3. 【解析】(1)根据待定系数法即可解决问题.求出直线BC与对称轴的交点H,根据S△BDC=S△BDH+S△DHC即可解决问题. (2)由,当方程组只有一组解时求出b的值,当直线y=﹣x+b经过点C时,求出b的值,当直线y=﹣x+b经过点B时,求出b的值,由此即可解决问题. 【解析】 (1)由题意解得, ∴抛物线解析式为y=x2﹣x+2. ∵...
练习册系列答案
相关题目

如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为( )

A.4 B.8 C.2 D.4

D. 【解析】 试题分析:在RT△ABF中,∠AFB=90°,AD=DB,DF=4,利用直角三角形斜边中线性质可得AB=2DF=8,再由AD=DB,AE=EC,可得DE∥BC,∠ADE=∠ABF=30°,所以AF=AB=4,由勾股定理可得BF=4.故选D.

如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为点F,连接DF.

(1)试说明AC=EF;

(2)求证:四边形ADFE是平行四边形.

(1)证明见解析(2)证明见解析 【解析】证明:(1)∵△ABE是等边三角形,EF⊥AB, ∴∠AEF =∠AEB= 30º,AE=AB,∠EFA= 90º. ∵∠ACB= 90º,∠BAC= 30º, ∴∠EFA=∠ACB,∠AEF=∠BAC. ∴△AEF≌△BAC. ∴AC = EF. (2)∵△ACD是等边三角形, ∴AC = AD,∠DAC=...

若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是(  )

A. 7 B. 10 C. 35 D. 70

C 【解析】由正n边形的每个内角为144°结合多边形内角和公式,即可得出关于n的一元一次方程,解方程即可求出n的值,将其代入中即可得出结论. 【解析】 ∵一个正n边形的每个内角为144°, ∴144n=180×(n﹣2),解得:n=10. 这个正n边形的所有对角线的条数是:==35. 故选C.

如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为   

(1+,2)或(1﹣,2). 【解析】【解析】 ∵△PCD是以CD为底的等腰三角形,∴点P在线段CD的垂直平分线上,如图,过P作PE⊥y轴于点E,则E为线段CD的中点,∵抛物线与y轴交于点C,∴C(0,3),且D(0,1),∴E点坐标为(0,2),∴P点纵坐标为2,在中,令y=2,可得,解得x=,∴P点坐标为(,2)或(,2),故答案为:(,2)或(,2).

将抛物线y=ax2﹣1平移后与抛物线y=a(x﹣1)2重合,抛物线y=ax2﹣1上的点A(2,3)同时平移到A′,那么点A′的坐标为(  )

A. (3,4) B. (1,2) C. (3,2) D. (1,4)

A 【解析】【解析】 ∵抛物线y=ax2﹣1的顶点坐标是(0,﹣1),抛物线y=a(x﹣1)2的顶点坐标是(1,0),∴将抛物线y=ax2﹣1向右平移1个单位,再向上平移1个单位得到抛物线y=a(x﹣1)2,∴将点A(2,3)向右平移1个单位,再向上平移1个单位得到点A′的坐标为(3,4). 故选A.

已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是( )

A. x1=1,x2=-1 B. x1=1,x2=2 C. x1=1,x2=0 D. x1=1,x2=3

B 【解析】试题分析:关于x的一元二次方程x2-3x+m=0的两实数根就是二次函数y=x2-3x+m(m为常数)的图象与x轴的两个交点的横坐标.∵二次函数的解析式是y=x2-3x+m(m为常数),∴该抛物线的对称轴是:x=. 又∵二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0), ∴根据抛物线的对称性质知,该抛物线与x轴的另一个交点的坐标是(2,0), ...

在边长为1个单位长度的小正方形组成的网格中,点A、B、C、O都是格点.

(1)将△ABC向左平移6个单位得到△A1B1C1,请画出△A1B1C1;

(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.

(1)作图见解析;(2)作图见解析. 【解析】试题分析:(1)把A、B、C三点分别向左平移6个单位长度,即可得到三个顶点的对应点,然后顺次连接三点即可; (2)连接AO并延长,然后截取OA2=OA,则A2就是A的对应点,同样可以作出B、C的对应点,然后顺次连接即可. 【解析】 (1)所作图形如图所示; (2)所作图形如图所示.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网