题目内容
12.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是( )①平行四边形 ②菱形 ③对角线相等的四边形 ④对角线互相垂直的四边形.
| A. | ①③ | B. | ②③ | C. | ③④ | D. | ②④ |
分析 已知梯形四边中点得到的四边形是矩形,则根据矩形的性质及三角形的中位线的性质进行分析,从而不难求解.
解答
解:如图点E,F,G,H分别是梯形各边的中点,且四边形EFGH是矩形.
∵点E,F,G,H分别是梯形各边的中点,且四边形EFGH是矩形.
∴∠FEH=90°,EF∥BD∥HG,FG∥AC∥EH,EF≠GH.
∴AC⊥BD.
①平行四边形的对角线不一定互相垂直,故①错误;
②菱形的对角线互相垂直,故②正确;
③对角线相等的四边形,故③错误;
④对角线互相垂直的四边形,故④正确.
综上所述,正确的结论是:②④.
故选:D.
点评 此题主要考查矩形的性质及三角形中位线定理的综合运用,正确掌握矩形的判定方法是解题关键.
练习册系列答案
相关题目