ÌâÄ¿ÄÚÈÝ
| 1 |
| 2 |
£¨1£©·Ö±ðÇóÏß¶ÎOB£¬OCµÄ³¤£»
£¨2£©¹ýP×÷xÖáµÄ´¹Ïߣ¬½»Ö±ÏßABÓÚµãQ£¬¹ýQ×÷xÖáµÄƽÐÐÏß½»Ö±ÏßCDÓÚµãM£¬ÉèÏß¶ÎQMµÄ³¤Îªy£¬µ±-6£¼t£¼4ʱ£¬ÇóyÓëtµÄº¯Êý¹ØÏµÊ½£»
£¨3£©ÈôµãTΪֱÏßCDÉÏÒ»¶¯µã£¬µ±ÒÔO£¬B£¬TΪ¶¥µãµÄÈý½ÇÐÎÓëÒÔO£¬B£¬PΪ¶¥µãµÄÈý½ÇÐÎÏàËÆÊ±£¬ÇóÏàÓ¦µÄµãP£¨t£¼0£©µÄ×ø±ê£®
¿¼µã£ºÒ»´Îº¯Êý×ÛºÏÌâ
רÌ⣺
·ÖÎö£º£¨1£©¸ù¾Ý×Ô±äÁ¿µÄÖµ£¬¿ÉµÃÏàÓ¦µÄº¯ÊýÖµ£¬¼´OBµÄ³¤¶È£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃCDµÄ½âÎöʽ£¬¸ù¾Ýº¯ÊýÖµ£¬¿ÉµÃÏàÓ¦×Ô±äÁ¿µÄÖµ£»
£¨2£©·ÖÀàÌÖÂÛ£º-6£¼t¡Ü2£¬2£¼t£¼2£¬¸ù¾ÝQM¡ÎxÖᣬ¿ÉµÃQ¡¢MµÄ×Ý×ø±êÏàµÈ£¬¸ù¾Ý´óµÄºá×ø±ê¼õСµÄºá×ø±ê£¬¿ÉµÃ´ð°¸£»
£¨3£©·ÖÀàÌÖÂÛ£º¢Ùµ±CÓëTÖØºÏʱ£¬¿ÉµÃ¡÷P1OB¡×¡÷TOB£¬¡÷P2OB¡×¡÷BOT£¬¢Úµ±CÓëT²»ÖغÏʱ£¬¡÷P1OB¡×¡÷TOB£¬¡÷P4OB¡×¡÷OBT£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬¿ÉµÃ´ð°¸£®
£¨2£©·ÖÀàÌÖÂÛ£º-6£¼t¡Ü2£¬2£¼t£¼2£¬¸ù¾ÝQM¡ÎxÖᣬ¿ÉµÃQ¡¢MµÄ×Ý×ø±êÏàµÈ£¬¸ù¾Ý´óµÄºá×ø±ê¼õСµÄºá×ø±ê£¬¿ÉµÃ´ð°¸£»
£¨3£©·ÖÀàÌÖÂÛ£º¢Ùµ±CÓëTÖØºÏʱ£¬¿ÉµÃ¡÷P1OB¡×¡÷TOB£¬¡÷P2OB¡×¡÷BOT£¬¢Úµ±CÓëT²»ÖغÏʱ£¬¡÷P1OB¡×¡÷TOB£¬¡÷P4OB¡×¡÷OBT£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬¿ÉµÃ´ð°¸£®
½â´ð£º½â£º£¨1£©µ±x=0ʱ£¬y=3£¬B£¨0£¬3£©
¼´OB=3£¬
D×÷DE¡ÍxÖáÓÚµãE£¨2£¬0£©£¬µÃ
DµãµÄºá×ø±êÊÇ2£¬
µ±x=2ʱ£¬y=
¡Á2+3=4£¬¼´Dµã×ø±êÊÇ£¨2£¬4£©£¬
Ö±ÏßCD y=kx+8¾¹ýD£¨2£¬4£©£¬µÃ
2k+8=4£¬
½âµÃk=-2£¬
Ö±ÏßCDµÄ½âÎöʽÊÇy=-2x+8£¬
µ±y=0ʱ£¬-2x+8=0£¬½âµÃx=4£¬
¼´OC=4£»
£¨2£©Èçͼ1£º
£¬
¢Ùµ±-6£¼x¡Ü2ʱ£¬µ±x=tʱ£¬y=
t+3£¬Q£¨t£¬
t+3£©£¬
QE¡ÎxÖᣬEµã×Ý×ø±êÊÇ
t+3£¬
µ±y=
t+3ʱ£¬
t+3=-2x+8£¬½âµÃx=-
t+
£¬
EµãµÄ×ø±êÊÇ£¨-
t+
£¬
t+3£©£¬
y=-
+
£»
Èçͼ2£º

¢Úµ±2¡Üt£¼4ʱ£¬µ±x=tʱ£¬y=
t+3£¬Q£¨t£¬
t+3£©£¬
QE¡ÎxÖᣬEµã×Ý×ø±êÊÇ
t+3£¬
µ±y=
t+3ʱ£¬
t+3=-2x+8£¬
½âµÃx=-
t+
£¬
EµãµÄ×ø±êÊÇ£¨-
t+
£¬
t+3£©£¬
y=t-£¨-
t+
£©=
t-
£¬
×ÛÉÏËùÊö£ºµ±-6¡Üx¡Ü2ʱ£¬y=-
+
£»
µ±2¡Üt¡Ü4ʱ£¬y=
t-
£»
£¨3£©Èçͼ3£º

¢Ùµ±CÓëT²»ÖغÏʱ£¬¡÷P1OB¡×¡÷TOB£¬µÃ
=
£¬½âµÃP1O=4£¬¼´P1£¨-4£¬0£©£»
¡÷P2OB¡×¡÷BOT£¬µÃ
=
£¬½âµÃP2O=
£¬¼´P2£¨-
£¬0£©£»
Èçͼ4£º

µ±y=3ʱ£¬3=-
x+8£¬½âµÃx=
£¬¼´BT=
£¬
¢ÚTÓëC²»ÖغÏʱ£¬BT¡ÍOB£¬¡ÏTBO=¡ÏP3OB=90¡ã£¬
¡÷P3OB¡×¡÷TBO£¬µÃ
=
£¬
½âµÃP3O=
£¬P3£¨-
£¬0£©£»
¡÷P4OB¡×¡÷OBT£¬µÃ
=
£¬P4O=
£¬P4£¨-
£¬0£©£¬
×ÛÉÏËùÊö£ºP£¨-
£¬0£©£¬£¨-
£¬0£©£¬£¨-4£¬0£©£¬£¨-
£¬0£©£®
¼´OB=3£¬
D×÷DE¡ÍxÖáÓÚµãE£¨2£¬0£©£¬µÃ
DµãµÄºá×ø±êÊÇ2£¬
µ±x=2ʱ£¬y=
| 1 |
| 2 |
Ö±ÏßCD y=kx+8¾¹ýD£¨2£¬4£©£¬µÃ
2k+8=4£¬
½âµÃk=-2£¬
Ö±ÏßCDµÄ½âÎöʽÊÇy=-2x+8£¬
µ±y=0ʱ£¬-2x+8=0£¬½âµÃx=4£¬
¼´OC=4£»
£¨2£©Èçͼ1£º
¢Ùµ±-6£¼x¡Ü2ʱ£¬µ±x=tʱ£¬y=
| 1 |
| 2 |
| 1 |
| 2 |
QE¡ÎxÖᣬEµã×Ý×ø±êÊÇ
| 1 |
| 2 |
µ±y=
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 4 |
| 5 |
| 2 |
EµãµÄ×ø±êÊÇ£¨-
| 5 |
| 4 |
| 5 |
| 2 |
| 1 |
| 2 |
y=-
| 9 |
| 4 |
| 5 |
| 2 |
Èçͼ2£º
¢Úµ±2¡Üt£¼4ʱ£¬µ±x=tʱ£¬y=
| 1 |
| 2 |
| 1 |
| 2 |
QE¡ÎxÖᣬEµã×Ý×ø±êÊÇ
| 1 |
| 2 |
µ±y=
| 1 |
| 2 |
| 1 |
| 2 |
½âµÃx=-
| 5 |
| 4 |
| 5 |
| 2 |
EµãµÄ×ø±êÊÇ£¨-
| 5 |
| 4 |
| 5 |
| 2 |
| 1 |
| 2 |
y=t-£¨-
| 5 |
| 4 |
| 5 |
| 2 |
| 9 |
| 4 |
| 5 |
| 2 |
×ÛÉÏËùÊö£ºµ±-6¡Üx¡Ü2ʱ£¬y=-
| 9 |
| 4 |
| 5 |
| 2 |
µ±2¡Üt¡Ü4ʱ£¬y=
| 9 |
| 4 |
| 5 |
| 2 |
£¨3£©Èçͼ3£º
¢Ùµ±CÓëT²»ÖغÏʱ£¬¡÷P1OB¡×¡÷TOB£¬µÃ
| P1O |
| TO |
| BO |
| BO |
¡÷P2OB¡×¡÷BOT£¬µÃ
| P2O |
| OB |
| OB |
| OT |
| 9 |
| 4 |
| 9 |
| 4 |
Èçͼ4£º
µ±y=3ʱ£¬3=-
| 1 |
| 2 |
| 5 |
| 2 |
| 5 |
| 2 |
¢ÚTÓëC²»ÖغÏʱ£¬BT¡ÍOB£¬¡ÏTBO=¡ÏP3OB=90¡ã£¬
¡÷P3OB¡×¡÷TBO£¬µÃ
| P3O |
| BT |
| BO |
| OB |
½âµÃP3O=
| 5 |
| 2 |
| 5 |
| 2 |
¡÷P4OB¡×¡÷OBT£¬µÃ
| P4O |
| OB |
| OB |
| TB |
| 18 |
| 5 |
| 18 |
| 5 |
×ÛÉÏËùÊö£ºP£¨-
| 5 |
| 2 |
| 18 |
| 5 |
| 9 |
| 4 |
µãÆÀ£º±¾Ì⿼²éÁËÒ»´Îº¯ÊýµÄ×ÛºÏÌ⣬ÀûÓÃÁ˺¯ÊýÖµÓë×Ô±äÁ¿µÄ¹ØÏµ£¬ÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬·ÖÀàÌÖÂÛÊǽâÌâ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÔÚ¡÷ABCÖУ¬ÈôAB=AC£¬ÔòsinBµÈÓÚ£¨¡¡¡¡£©
A¡¢sin
| ||
B¡¢cos
| ||
| C¡¢sinA | ||
| D¡¢cosA |
| A¡¢h=m | B¡¢k£¾n |
| C¡¢k=n | D¡¢h£¾0£¬k£¾0 |
Èç¹û£¨x+m£©£¨x-n£©Öв»º¬xµÄÒ»´ÎÏÔòm¡¢nÂú×㣨¡¡¡¡£©
| A¡¢m=n | B¡¢m=0 |
| C¡¢m=-n | D¡¢n=0 |
ÔÚËãʽam+n¡Â£¨¡¡¡¡£©=am-2ÖУ¬À¨ºÅÄڵĴúÊýʽӦÊÇ£¨¡¡¡¡£©
| A¡¢am+n-2 |
| B¡¢an-2 |
| C¡¢am+n+3 |
| D¡¢an+2 |
ÒÑÖªÁâÐεÄÖܳ¤Îª40cm£¬Ò»Ìõ¶Ô½ÇÏß³¤Îª16cm£¬ÔòÕâ¸öÁâÐεÄÃæ»ýΪ£¨¡¡¡¡£©cm2£®
| A¡¢108 | B¡¢114 |
| C¡¢64 | D¡¢96 |