题目内容
从-1、0、1、2这四个数中任取一个数作为点P的横坐标,再从剩下的三个数中任取一个作为点P的纵坐标,则点P落在抛物线y=-x2+x+2与直线y=-x-1所围成的区域内(不含边界)的概率为 .
考点:列表法与树状图法
专题:
分析:列举出所有情况,看点P(x,y)在抛物线y=-x2+x+2与直线y=-x-1上的情况数占所有情况数的多少即可.
解答:解:点P坐标共有12种可能,即(-1,0),(-1,1),(-1,2),
(0,-1),(0,1),(0,2),
(1,-1),(1,0),(1,2),
(2,-1),(2,0),(2,1),
所以P落在抛物线y=-x2+x+2与直线y=-x-1所围成的区域内(不含边界)的概率只有4种,所以概率为
.
故答案为:
.
(0,-1),(0,1),(0,2),
(1,-1),(1,0),(1,2),
(2,-1),(2,0),(2,1),
所以P落在抛物线y=-x2+x+2与直线y=-x-1所围成的区域内(不含边界)的概率只有4种,所以概率为
| 1 |
| 3 |
故答案为:
| 1 |
| 3 |
点评:考查用列树状图的方法解决概率问题;得到点P(x,y)在抛物线y=-x2+x+2与直线y=-x-1上的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.
练习册系列答案
相关题目
小刚平面直角坐标系中画了一张脸,他对妹妹说;“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示成( )
| A、(1,2) |
| B、(2,3) |
| C、(3,2) |
| D、(2,1) |