题目内容

6.已知a、b、c是△ABC的三边,且满足a2+c2+2b(b-a-c)=0,求△ABC各角的度数.

分析 先把原式化为(a-b)2+(b-c)2=0,再利用非负数的性质得出a=b=c,那么△ABC是等边三角形,根据等边三角形的性质即可求解.

解答 解:∵a2+c2+2b(b-a-c)=0,
∴a2+c2+2b2-2ab-2bc=0,
∴a2+b2-2ab+c2-2bc+b2=0,
即(a-b)2+(b-c)2=0,
∴a-b=0且b-c=0,即a=b且b=c,
∴a=b=c.
∴△ABC是等边三角形,
∴∠A=∠B=∠C=60°.

点评 此题考查因式分解的应用,非负数的性质,等边三角形的判定与性质,利用完全平方公式因式分解是解决问题的关键.

练习册系列答案
相关题目
17.定义正整数m,n的运算:m△n=$\frac{1}{m}$+$\frac{1}{{m}^{2}}$+$\frac{1}{{m}^{3}}$+$\frac{1}{{m}^{4}}$+…+$\frac{1}{{m}^{n}}$
(1)计算3△2的值为$\frac{4}{9}$;运算“△”满足交换规律吗?回答:否(填“是”或“否”)
(2)探究:计算2△10=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{2{0}^{10}}$的值.
为解决上面的问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系的几何图形结合起来,最终解决问题.
如图所示,第一次分割,把正方形的面积二等分,其中阴影部分的面积为$\frac{1}{2}$;
第2此分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为$\frac{1}{2}$$+\frac{1}{{2}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续二等分,…;依此类推,…
第10次分割,把二次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为$\frac{1}{2}$-$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{10}}$,最后空白部分的面积是$\frac{1}{{2}^{10}}$;根据第10次分割图可以得出计算结果:$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{{2}^{10}}$=1-$\frac{1}{{2}^{10}}$.
进一步分析可得出,$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$
(3)已知n是正整数,计算4△n=$\frac{1}{4}$+$\frac{1}{{4}^{2}}$+$\frac{1}{{4}^{3}}$+$\frac{1}{{4}^{4}}$+…+$\frac{1}{{4}^{n}}$的结果.
按指定方法解决问题:请仿照以上做法,只需画出第n次分割图并作标注,写出最终结果的推理步骤;或借用以上结论进行推理,写出必要的步骤.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网