题目内容
在学习了全等三角形和等边三角形的知识后,张老师出了如下一道题:如图,点B是线段AC上任意一点,分别以AB、BC为边在AC同一侧作等边△ABD和等边△BCE,连接CD、AE分别与BE和DB交于点N、M,连接MN.
(1)求证:△ABE≌△DBC.
![]()
接着张老师又让学生分小组进行探究:你还能得出什么结论?
精英小组探究的结论是:AM=DN.
奋斗小组探究的结论是:△EMB≌△CNB.
创新小组探究的结论是:MN∥AC.
(2)你认为哪一小组探究的结论是正确的?
(3)选择其中你认为正确的一种情形加以证明.
(1)证明见解析;(2)三个小组探究的结论都正确;(3)证明见解析 【解析】试题分析: (1)由△ABD和△BCE都是等边三角形可得:AB=DB,BC=BE,∠ABD=∠EBC=60°,这样可得∠ABE=∠DBC,从而可由“SAS”证得△ABE≌△DBC; (2)由△ABE≌△DBC可得∠EAB=∠CDB,而由已知条件易证∠DBN=∠ABD=60°,结合AB=DB可证△ABM≌△...
练习册系列答案
相关题目
某同学家长应邀参加孩子就读中学的开放日活动,他打算上午随机听一节孩子所在1班的课,下表是他拿到的当天上午1班的课表,如果每一节课被听的机会均等,那么他听数学课的概率是_____.
班级节次 | 1班 |
第1节 | 语文 |
第2节 | 英语 |
第3节 | 数学 |
第4节 | 音乐 |