ÌâÄ¿ÄÚÈÝ

3£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=$\frac{1}{3}$x2¾­¹ýÆ½ÒÆµÃµ½Å×ÎïÏßy=ax2+bx£¬Æä¶Ô³ÆÖáÓëÁ½¶ÎÅ×ÎïÏßËùΧ³ÉµÄÒõÓ°²¿·ÖµÄÃæ»ýΪ$\frac{8}{3}$£¬Ôòa¡¢bµÄÖµ·Ö±ðΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}$£¬$\frac{4}{3}$B£®$\frac{1}{3}$£¬-$\frac{8}{3}$C£®$\frac{1}{3}$£¬-$\frac{4}{3}$D£®-$\frac{1}{3}$£¬$\frac{4}{3}$

·ÖÎö È·¶¨³öÅ×ÎïÏßy=ax2+bxµÄ¶¥µã×ø±ê£¬È»ºóÇó³öÅ×ÎïÏߵĶԳÆÖáÓëÔ­Å×ÎïÏߵĽ»µã×ø±ê£¬´Ó¶øÅжϳöÒõÓ°²¿·ÖµÄÃæ»ýµÈÓÚÈý½ÇÐεÄÃæ»ý£¬ÔÙ¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½ÁÐʽ¼ÆËã¼´¿ÉµÃ½â£®

½â´ð ½â£ºÈçͼ£¬
¡ßy=ax2+bx=$\frac{1}{3}$x2+bx=$\frac{1}{3}$£¨x+$\frac{3b}{2}$£©2-$\frac{3{b}^{2}}{4}$£¬
¡àÆ½ÒÆºóÅ×ÎïÏߵĶ¥µã×ø±êΪ£¨-$\frac{3b}{2}$£¬-$\frac{3{b}^{2}}{4}$£©£¬¶Ô³ÆÖáΪֱÏßx=-$\frac{3b}{2}$£¬
µ±x=-$\frac{3b}{2}$ʱ£¬y=$\frac{3{b}^{2}}{4}$£¬
¡àÆ½ÒÆºóÒõÓ°²¿·ÖµÄÃæ»ýµÈÓÚÈçͼÈý½ÇÐεÄÃæ»ý£¬
$\frac{1}{2}$¡Á£¨$\frac{3{b}^{2}}{4}$+$\frac{3{b}^{2}}{4}$£©¡Á£¨-$\frac{3b}{2}$£©=$\frac{8}{3}$£®
½âµÃb=-$\frac{4}{3}$£¬
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýͼÏóÓ뼸ºÎ±ä»»£¬È·¶¨³öÓëÒõÓ°²¿·ÖÃæ»ýÏàµÈµÄÈý½ÇÐÎÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø