ÌâÄ¿ÄÚÈÝ
3£®| A£® | $\frac{1}{3}$£¬$\frac{4}{3}$ | B£® | $\frac{1}{3}$£¬-$\frac{8}{3}$ | C£® | $\frac{1}{3}$£¬-$\frac{4}{3}$ | D£® | -$\frac{1}{3}$£¬$\frac{4}{3}$ |
·ÖÎö È·¶¨³öÅ×ÎïÏßy=ax2+bxµÄ¶¥µã×ø±ê£¬È»ºóÇó³öÅ×ÎïÏߵĶԳÆÖáÓëÔÅ×ÎïÏߵĽ»µã×ø±ê£¬´Ó¶øÅжϳöÒõÓ°²¿·ÖµÄÃæ»ýµÈÓÚÈý½ÇÐεÄÃæ»ý£¬ÔÙ¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½ÁÐʽ¼ÆËã¼´¿ÉµÃ½â£®
½â´ð ½â£ºÈçͼ
£¬
¡ßy=ax2+bx=$\frac{1}{3}$x2+bx=$\frac{1}{3}$£¨x+$\frac{3b}{2}$£©2-$\frac{3{b}^{2}}{4}$£¬
¡àÆ½ÒÆºóÅ×ÎïÏߵĶ¥µã×ø±êΪ£¨-$\frac{3b}{2}$£¬-$\frac{3{b}^{2}}{4}$£©£¬¶Ô³ÆÖáΪֱÏßx=-$\frac{3b}{2}$£¬
µ±x=-$\frac{3b}{2}$ʱ£¬y=$\frac{3{b}^{2}}{4}$£¬
¡àÆ½ÒÆºóÒõÓ°²¿·ÖµÄÃæ»ýµÈÓÚÈçͼÈý½ÇÐεÄÃæ»ý£¬
$\frac{1}{2}$¡Á£¨$\frac{3{b}^{2}}{4}$+$\frac{3{b}^{2}}{4}$£©¡Á£¨-$\frac{3b}{2}$£©=$\frac{8}{3}$£®
½âµÃb=-$\frac{4}{3}$£¬
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýͼÏóÓ뼸ºÎ±ä»»£¬È·¶¨³öÓëÒõÓ°²¿·ÖÃæ»ýÏàµÈµÄÈý½ÇÐÎÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
14£®ÏÂÁмÆË㣬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | x3•x4=x12 | B£® | £¨3x£©3=27x3 | C£® | £¨x3£©3=x6 | D£® | 2x2¡Âx=x |
18£®Ä³Ð¡Çø¹²ÓÐ5000¸ö¼ÒÍ¥£¬ÎªÁËÁ˽âÏ½Çø¾ÓÃñµÄס·¿Çé¿ö£¬¾ÓÃñίԱ»áËæ»úµ÷²éÁ˱¾Ï½ÇøÄÚÒ»¶¨ÊýÁ¿µÄ¼ÒÍ¥µÄס·¿Ãæ»ý£¬²¢½«µ÷²éµÄ×ÊÁÏ»æÖƳÉÖ±·½Í¼ºÍÉÈÐÎͼ£®£¨m¡«nÖк¬ÓҶ˵㣬²»º¬×ó¶Ëµã£©

ÇëÄã¸ù¾ÝÒÔÉϲ»ÍêÕûµÄÖ±·½Í¼ºÍÉÈÐÎͼÌṩµÄÐÅÏ¢£¬½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©Õâ´Î¹²µ÷²éÁ˶àÉÙ¸ö¼ÒÍ¥µÄס·¿Ãæ»ý£¿ÉÈÐÎͼÖеÄa¡¢bµÄÖµ·Ö±ðÊǶàÉÙ£¿
£¨2£©²¹È«ÆµÊý·Ö²¼Ö±·½Í¼£»
£¨3£©±»µ÷²éµÄ¼ÒÍ¥ÖУ¬ÔÚδÀ´5ÄêÄÚ£¬¼Æ»®¹ºÂòµÚ¶þÌ×ס·¿µÄ¼Òͥͳ¼ÆÈçÏÂ±í£º
¸ù¾ÝÕâ´Îµ÷²é£¬¹À¼Æ±¾Ð¡ÇøÔÚδÀ´µÄ5ÄêÄÚ£¬¹²ÓжàÉÙ¸ö¼ÒÍ¥¼Æ»®¹ºÂòµÚ¶þÌ×ס·¿£¿
ÇëÄã¸ù¾ÝÒÔÉϲ»ÍêÕûµÄÖ±·½Í¼ºÍÉÈÐÎͼÌṩµÄÐÅÏ¢£¬½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©Õâ´Î¹²µ÷²éÁ˶àÉÙ¸ö¼ÒÍ¥µÄס·¿Ãæ»ý£¿ÉÈÐÎͼÖеÄa¡¢bµÄÖµ·Ö±ðÊǶàÉÙ£¿
£¨2£©²¹È«ÆµÊý·Ö²¼Ö±·½Í¼£»
£¨3£©±»µ÷²éµÄ¼ÒÍ¥ÖУ¬ÔÚδÀ´5ÄêÄÚ£¬¼Æ»®¹ºÂòµÚ¶þÌ×ס·¿µÄ¼Òͥͳ¼ÆÈçÏÂ±í£º
| ס·¿ÃæºÍ£¨m2£© | ¡Ü40 | 40¡«70 | 70¡«100 | 100¡«130 | 130¡«160 | £¾160 |
| $\frac{¼Æ»®¹ºµÚ¶þÌ×·¿µÄ¼ÒÍ¥Êý}{±»µ÷²éµÄ¼ÒÍ¥Êý}$ | 0 | $\frac{1}{2}$ | $\frac{1}{4}$ | $\frac{1}{8}$ | $\frac{1}{16}$ | $\frac{1}{32}$ |
8£®ÏÂÁе÷²éÖУ¬×îÊʺÏʹÓÃÆÕ²éµÄÊÇ£¨¡¡¡¡£©
| A£® | µ÷²éÖØÇìijÈÕÉú²úµÄ¿¼ÊÔרÓÃ2BǦ±ÊÖÊÁ¿ | |
| B£® | µ÷²éÈ«¹úÖÐѧÉú¶Ô¡¶±¼Åܰɣ®Ðֵܡ·½ÚÄ¿µÄϲ°®³Ì¶È | |
| C£® | µ÷²éij¹«Ë¾Éú²úµÄÒ»ÅúÅ£Ä̵ı£ÖÊÆÚ | |
| D£® | µ÷²éijУ³õ¶þ£¨2£©°àÅ®ÉúÊî¼ÙÂÃÓμƻ® |