题目内容
分解因式: .
如图,抛物线y=x2+bx-2与x轴交于A、B两点, 与y轴交于C点,且A(一1,0).
⑴求抛物线的解析式及顶点D的坐标;
⑵判断△ABC的形状,证明你的结论;
⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.
二次函数y=2(x﹣3)2﹣4的最小值为 .
如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.
(1)试判断BE与FH的数量关系,并说明理由;
(2)求证:∠ACF=90°;
(3)如图2,过A、E、F三点作圆,若EC=4,∠CEF=15°,求AE的长.
计算:.
如图,圆锥的表面展开图由一个扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,则这个扇形的面积为( )
A.300π B.150π C.200π D.600π
如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于点C(0,-3),点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.
(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POP’C, 那么是否存在点P,使四边形POP’C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形 ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.
某班抽取6名同学参加体能测试,成绩如下:85,90,75,75,80,80.下列表述正确的是( )
A.众数是80 B.中位数是75
C.平均数是80 D.极差是15
(1)计算:
(2)解方程: