题目内容

如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点C.抛物线经过A,C两点,且与x轴交于另一点B(点B在点A右侧).

(1)求抛物线的解析式及点B坐标;

(2)若点M是线段BC上的一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;

(3)试探究当ME取最大值时,在抛物线上、x轴下方是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.

见解析 【解析】 试题分析:(1)由求出点A,C的坐标,然后带入,解方程组即可;(2)求出直线BC的解析式是y=x-3,根据点M在直线BC 上,设M(x,x-3),则E(x,x2-2x-3) ,表示出线段ME的长,用配方法可求出最大值;(3)设在抛物线x轴下方存在点P,使以P,M,F,B为顶点的四边形是平行四边形,求出点P的坐标,然后判断点P是不是在抛物线上即可. 试题解析...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网