题目内容

3.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:
①BE=$\frac{1}{2}$GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH
其中,正确的结论有(  )
A.1个B.2个C.3个D.4个

分析 根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=$\frac{\sqrt{2}}{2}$GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.

解答 解:∵四边形ABCD是正方形,
∴∠B=∠DCB=90°,AB=BC,
∵AG=CE,
∴BG=BE,
由勾股定理得:BE=$\frac{\sqrt{2}}{2}$GE,∴①错误;
∵BG=BE,∠B=90°,
∴∠BGE=∠BEG=45°,
∴∠AGE=135°,
∴∠GAE+∠AEG=45°,
∵AE⊥EF,
∴∠AEF=90°,
∵∠BEG=45°,
∴∠AEG+∠FEC=45°,
∴∠GAE=∠FEC,
在△GAE和△CEF中
$\left\{\begin{array}{l}{AG=CE}\\{∠GAE=∠CEF}\\{AE=EF}\end{array}\right.$
∴△GAE≌△CEF,∴②正确;
∴∠AGE=∠ECF=135°,
∴∠FCD=135°-90°=45°,∴③正确;
∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,
∴∠FEC<45°,
∴△GBE和△ECH不相似,∴④错误;
即正确的有2个.
故选B.

点评 本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网