题目内容

8.如图,在△ABC中,AB=AC,点D,E,F分别在AB,BC,AC边上,且BE=CF,BD=CE.
(1)求证:△DEF是等腰三角形;
(2)当∠A=50°时,求∠DEF的度数;
(3)△DEF可能是等腰直角三角形吗?为什么?

分析 (1)根据AB=AC可得∠B=∠C,即可求证△BDE≌△CEF,即可解题;
(2)根据全等三角形的性质得到∠CEF=∠BDE,于是得到∠DEF=∠B,根据等腰三角形的性质即可得到结论.
(3)由(1)知:△DEF是等腰三角形,DE=EF,由(2)知,∠DEF=∠B,于是得到结论.

解答 (1)证明:∵AB=AC,
∴∠B=∠C,
在△BDE和△CEF中,
∵$\left\{\begin{array}{l}{BE=CF}\\{∠B=∠C}\\{BD=CE}\end{array}\right.$
∴△BDE≌△CEF,
∴DE=EF,
∴△DEF是等腰三角形;
(2)解:∵∠DEC=∠B+∠BDE,
即∠DEF+∠CEF=∠B+∠BDE,
∵△BDE≌△CEF,
∴∠CEF=∠BDE,
∴∠DEF=∠B,
又∵在△ABC中,AB=AC,∠A=50°,
∴∠B=65°,
∴∠DEF=65°;
(3)解:由(1)知:△DEF是等腰三角形,DE=EF,
由(2)知,∠DEF=∠B,
而∠B不可能为直角,
∴△DEF不可能是等腰直角三角形.

点评 本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网