题目内容
16.计算:(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)…(1-$\frac{1}{19{8}^{2}}$)(1-$\frac{1}{19{9}^{2}}$)分析 利用平方差公式因式分解,进一步整理把分子分母交错约分抵消得出答案即可.
解答 解:原式=(1-$\frac{1}{2}$)(1+$\frac{1}{2}$)(1-$\frac{1}{3}$)(1+$\frac{1}{3}$)(1-$\frac{1}{4}$)(1+$\frac{1}{4}$)…(1-$\frac{1}{198}$)(1+$\frac{1}{198}$)(1-$\frac{1}{199}$)(1+$\frac{1}{199}$)
=$\frac{1}{2}$×$\frac{3}{2}$×$\frac{2}{3}$×$\frac{4}{3}$×$\frac{3}{4}$×$\frac{5}{4}$×…×$\frac{197}{198}$×$\frac{199}{198}$×$\frac{198}{199}$×$\frac{200}{199}$
=$\frac{1}{2}$×$\frac{200}{199}$
=$\frac{100}{199}$.
点评 此题考查因式分解的实际运用,掌握平方差公式是解决问题的关键.
练习册系列答案
相关题目
11.
如图,在Rt△ABC中,∠ACB=90°,点D、E分别为AB、BC的中点,点F在AC的延长线上,∠FEC=∠B.请问CF=DE成立吗?试说明理由.(提示:直角三角形斜边上的中线等于斜边的一半.)
1.
如图,在平面直角坐标系中,Rt△ABC的直角顶点A和顶点B分别在y轴正半轴及x轴正半轴上运动,若AB=4,AC=3,则在运动过程中,线段OC的最大值是( )
| A. | 5 | B. | 2+$\sqrt{13}$ | C. | $\sqrt{13}$ | D. | 6 |