题目内容
考点:全等三角形的判定与性质
专题:证明题
分析:根据同角的余角相等求出∠A=∠BOD,然后利用“角角边”证明△AOC和△OBD全等,根据全等三角形对应边相等证明即可.
解答:证明:∵∠AOB=90°,
∴∠AOC+∠BOD=90°,
∵AC⊥l,BD⊥l,
∴∠ACO=∠BDO=90°,
∴∠A+∠AOC=90°,
∴∠A=∠BOD,
在△AOC和△OBD中,
,
∴△AOC≌△OBD(AAS),
∴AC=OD.
∴∠AOC+∠BOD=90°,
∵AC⊥l,BD⊥l,
∴∠ACO=∠BDO=90°,
∴∠A+∠AOC=90°,
∴∠A=∠BOD,
在△AOC和△OBD中,
|
∴△AOC≌△OBD(AAS),
∴AC=OD.
点评:本题考查了全等三角形的判定与性质,同角的余角相等的性质,利用三角形全等证明边相等是常用的方法之一,要熟练掌握并灵活运用.
练习册系列答案
相关题目
下列命题中:
(1)对顶角相等;
(2)相等的角是对顶角;
(3)同一个角的两个邻角是对顶角;
(4)有公共顶点且相等的两个角是对顶角;
其中,互为逆命题的是( )
(1)对顶角相等;
(2)相等的角是对顶角;
(3)同一个角的两个邻角是对顶角;
(4)有公共顶点且相等的两个角是对顶角;
其中,互为逆命题的是( )
| A、(1)和(2) |
| B、(2)和(3) |
| C、(1)和(3) |
| D、(1)和(4) |