题目内容

15.计算题
(1)3$\sqrt{8}$-5$\sqrt{32}$
(2)$\frac{\sqrt{12}+\sqrt{27}}{\sqrt{3}}$
(3)$\sqrt{40}$-5$\sqrt{\frac{1}{10}}$+$\sqrt{10}$.

分析 (1)先对原式进行化简,然后合并同类项即可解答本题;
(2)先对分子化简,然后约分即可解答本题;
(3)先对原式进行化简,然后合并同类项即可解答本题.

解答 解:(1)3$\sqrt{8}$-5$\sqrt{32}$
=$6\sqrt{2}-20\sqrt{2}$
=-14$\sqrt{2}$;
(2)$\frac{\sqrt{12}+\sqrt{27}}{\sqrt{3}}$
=$\frac{2\sqrt{3}+3\sqrt{3}}{\sqrt{3}}$
=$\frac{5\sqrt{3}}{\sqrt{3}}$
=5;
(3)$\sqrt{40}$-5$\sqrt{\frac{1}{10}}$+$\sqrt{10}$
=2$\sqrt{10}-5×\frac{\sqrt{10}}{10}+\sqrt{10}$
=$2\sqrt{10}-\frac{\sqrt{10}}{2}+\sqrt{10}$
=$\frac{5\sqrt{10}}{2}$.

点评 本题考查二次根式的混合运算,解题的关键是明确二次根式混合运算的计算方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网