题目内容

14.如图,抛物线y=x2+bx+c经过点A(-1,0),B(3,0).请解答下列问题:
(1)求抛物线的解析式;
(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.

分析 (1)由于抛物线y=x2+bx+c经过A(-1,0),B(3,0)两点,根据待定系数法可求抛物线的解析式;
(2)先得到点E(2,-3),根据勾股定理可求BE,再根据直角三角形的性质可求线段HF的长.

解答 解:(1)∵抛物线y=x2+bx+c经过点A(-1,0),B(3,0),
∴$\left\{\begin{array}{l}{1-b+c=0}\\{9+3b+c=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{b=-2}\\{c=-3}\end{array}\right.$.
∴抛物线的解析式为:y=x2-2x-3;

(2)∵点E(2,m)在抛物线上,
∴m=4-4-3=-3,
∴E(2,-3),
∴BE=$\sqrt{(3-2)^{2}+(0+3)^{2}}$=$\sqrt{10}$,
∵点F是AE中点,抛物线的对称轴与x轴交于点H,即H为AB的中点,
∴FH是三角形ABE的中位线,
∴FH=$\frac{1}{2}$BE=$\frac{1}{2}$×$\sqrt{10}$=$\frac{\sqrt{10}}{2}$.

点评 考查了二次函数综合题,涉及的知识点有:待定系数法求抛物线的解析式,勾股定理,直角三角形的性质,方程思想的应用,综合性较强,有一定的难度.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网