题目内容

如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交∠BCD的外角平分线于F,设BE=x,△ECF的面积为y,下列图象中,能表示y与x的函数关系的图象大致是(  )
A、
B、
C、
D、
考点:动点问题的函数图象
专题:
分析:过E作EH⊥BC于H,求出EH=CH,求出△BAP∽△HPE,得出
AB
PH
=
BP
EH
,求出EH=x,代入y=
1
2
×CP×EH求出解析式,根据解析式确定图象即可.
解答:解:过E作EH⊥BC于H,
∵四边形ABCD是正方形,
∴∠DCH=90°,
∵CE平分∠DCH,
∴∠ECH=
1
2
∠DCH=45°,
∵∠H=90°,
∴∠ECH=∠CEH=45°,
∴EH=CH,
∵四边形ABCD是正方形,AP⊥EP,
∴∠B=∠H=∠APE=90°,
∴∠BAP+∠APB=90°,∠APB+∠EPH=90°,
∴∠BAP=∠EPH,
∵∠B=∠H=90°,
∴△BAP∽△HPE,
AB
PH
=
BP
EH

4
4-x+EH
=
x
EH

∴EH=x,
∴y=
1
2
×CP×EH
=
1
2
(4-x)•x
y=2x-
1
2
x2
故选C.
点评:本题考查了动点问题的函数图象,正方形性质,角平分线定义,相似三角形的性质和判定的应用,关键是能用x的代数式把CP和EH的值表示出来.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网