题目内容
二次函数y=ax2+bx+c的图象如图所示,下列结论:
①4ac<b2;②a+c>b;③2a+b>0.
其中正确的有( )
A.①② B.①③ C.②③ D.①②③
化简求值
(2a +b)2—(a+1-b)(a+1 + b)+,其中a =,b = —2
经过三边都不相等的三角形的一个顶点的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线
(2)在△ABC中,∠A=52°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.
(3)如图2,△ABC中,AC=3,BC=2,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.
甲、乙、丙三人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是S2=0.90,S乙2=1.22,S丙2=0.43,在本次射击测试中,成绩最稳定的是 .
已知,⊙O的半径为5cm,点P到圆心O的距离为4cm,则点P在⊙O的( )
A. 外部 B. 内部 C. 圆上 D. 不能确定
如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E、D是抛物线的顶点.
(1)求此抛物线的解析式;
(2)求点C和点D的坐标.
如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为_____米.
解方程:
(1)x2﹣4x﹣1=0
(2)x2﹣3x=(2﹣x)(x﹣3)
将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为( )
A. y=(x﹣1)2+4 B. y=(x﹣4)2+4 C. y=(x+2)2+6 D. y=(x﹣4)2+6