题目内容

15.看图填空:已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,
求证:AD平分∠BAC.
证明:∵AD⊥BC于D,EG⊥BC于G(  已知  )
∴∠ADC=90°,∠EGC=90°(垂直的定义)
∴∠ADC=∠EGC(等量代换)
∴AD∥EG(同位角相等,两直线平行  )
∴∠1=∠2(两直线平行,内错角相等)
∠E=∠3(两直线平行,同位角相等)
又∵∠E=∠1( 已知)
∴∠2=∠3(等量代换)
∴AD平分∠BAC(角平分线的定义).

分析 由垂直可证明AD∥EG,由平行线的性质可得到∠1=∠2=∠3=∠E,可证得结论,据此填空即可.

解答 证明:
∵AD⊥BC于D,EG⊥BC于G(已知),
∴∠ADC=90°,∠EGC=90°(垂直的定义),
∴∠ADC=∠EGC(等量代换),
∴AD∥EG(同位角相等,两直线平行 ),
∴∠1=∠2(两直线平行,内错角相等),
∠E=∠3(两直线平行,同位角相等),
又∵∠E=∠1( 已知),
∴∠2=∠3(等量代换),
∴AD平分∠BAC(角平分线的定义).
故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同位角相等;等量代换;角平分线的定义.

点评 本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①两直线平行?同位角相等,②两直线平行?内错角相等,③两直线平行?同旁内角互补,④a∥b,b∥c⇒a∥c.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网