题目内容

1.如图,在四边形ABCD中,∠BAD=∠BCD=90°,M、N分别是BD、AC的中点
(1)求证:MN⊥AC;
(2)若∠ADC=120°,求∠1的度数.

分析 (1)首先由直接三角形的斜边上的中线的性质得出AM=CM,进一步利用等腰三角形的三线合一得出结论;
(2)由直接三角形的斜边上的中线的性质得出AM=MD=MC,利用三角形的内角和得出∠AMD=180°-2∠ADM,∠CMD=180°-2∠CDM,求得∠AMC,进一步利用等腰三角形的性质得出答案即可.

解答 (1)证明:∵∠BAD=∠BCD=90°,M是BD的中点,
∴AM=$\frac{1}{2}$BD,CM=$\frac{1}{2}$BD,
∵N是AC的中点,
∴MN⊥AC;
(2)解:∵M是BD的中点,
∴MD=$\frac{1}{2}$BD,
∴AM=DM,
∴∠AMD=180°-2∠ADM,
同理∠CMD=180°-2∠CDM,
∴∠AMC=∠AMD+∠CMD=180°-2∠ADM+180°-2∠CDM=120°,
∵AM=DM,
∴∠1=∠2=30°.

点评 本题考查了直角三角形斜边上中线性质,等腰三角形的判定的应用与性质,三角形的内角和定理,掌握图形的基本性质是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网