ÌâÄ¿ÄÚÈÝ
15£®¡ß£¨$\frac{a-b}{2}$£©2¡Ý0£»¡àab¡Ü£¨$\frac{a+b}{2}$£©2£»Èçͼ£ºÈç¹ûµãA£¨a£¬b£©ÊÇ·´±ÈÀýº¯Êýy=$\frac{3}{x}$£¨x£¾0£©Í¼ÏóÉÏÒ»µã£¬¹ýµãA×÷xÖáµÄ´¹Ïߣ»¹ýµãA×÷yÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪµãB£¬C£¬·ÂÕÕÉÏÃæ¸ø¶¨µÄÌõ¼þ
£¨1£©Çó³öËıßÐÎOBACµÄÖܳ¤×îСֵ
£¨2£©ËıßÐÎOBACµÄÖܳ¤×îСʱµãAµÄ×ø±ê£®
·ÖÎö £¨1£©ÓɵãAÔÚµÚÒ»ÏóÏÞ¼´¿ÉµÃ³öa£¾0¡¢b£¾0¡¢a+b£¾0¡¢ab=3£¬½áºÏab¡Ü£¨$\frac{a+b}{2}$£©2¼´¿ÉµÃ³öa+b¡Ý2$\sqrt{3}$£¬ÔÙ¸ù¾Ý¾ØÐεÄÖܳ¤¹«Ê½¼´¿ÉµÃ³ö½áÂÛ£»
£¨2£©Óɵ±a=bʱa-b=0£¬¼´¿ÉµÃ³öµ±a=bʱËıßÐÎOBACµÄÖܳ¤×îС£¬½áºÏab=3¼´¿ÉµÃ³öµãAµÄ×ø±ê£®
½â´ð ½â£º£¨1£©¡ßµãA£¨a£¬b£©ÊÇ·´±ÈÀýº¯Êýy=$\frac{3}{x}$£¨x£¾0£©Í¼ÏóÉÏÒ»µã£¬
¡àa£¾0£¬b£¾0£¬a+b£¾0£¬ab=3£®
¡ßab¡Ü£¨$\frac{a+b}{2}$£©2£¬
¡àa+b¡Ý2$\sqrt{3}$£¬
¡àËıßÐÎOBACµÄÖܳ¤2£¨a+b£©¡Ý4$\sqrt{3}$£¬¼´ËıßÐÎOBACµÄÖܳ¤×îСֵΪ4$\sqrt{3}$£®
£¨2£©¡ßµ±a=bʱ£¬a-b=0£¬
¡àµ±a=bʱ£¬ËıßÐÎOBACµÄÖܳ¤×îС£®
¡ßab=3£¬ÇÒµãA£¨a£¬b£©ÔÚµÚÒ»ÏóÏÞ£¬
¡àËıßÐÎOBACµÄÖܳ¤×îСʱµãAµÄ×ø±êΪ£¨$\sqrt{3}$£¬$\sqrt{3}$£©£®
µãÆÀ ±¾Ì⿼²éÁË·´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢²»µÈʽµÄÐÔÖÊÒÔ¼°¾ØÐεÄÖܳ¤£¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©¸ù¾Ý²»µÈʽµÄÐÔÖÊÕÒ³öa+b¡Ý2$\sqrt{3}$£»£¨2£©¸ù¾Ý²»µÈʽµÄÐÔÖÊÕÒ³öµ±a=bʱ£¬ËıßÐÎOBACµÄÖܳ¤×îС£®
| A£® | $2\sqrt{10}$ | B£® | 12 | C£® | 2$\sqrt{10}$+10 | D£® | 12»ò2$\sqrt{10}$+10 |
| A£® | $\frac{a-8}{5}$ÀåÃ× | B£® | $\frac{a+8}{5}$ÀåÃ× | C£® | $\frac{a-4}{5}$ÀåÃ× | D£® | $\frac{a-16}{5}$ÀåÃ× |