题目内容

如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.

(1)求证:AB=BE;

(2)若PA=2,cosB=,求⊙O半径的长.

(1)证明见解析;(2)3. 【解析】试题分析:(1)连接OD,由PD切⊙O于点D,得到OD⊥PD,由于BE⊥PC,得到OD∥BE,得出∠ADO=∠E,根据等腰三角形的性质和等量代换可得结果; (2)由(1)知,OD∥BE,得到∠POD=∠B,根据三角函数的定义即可得到结果. 试题解析:(1)证明:连接OD, ∵PD切⊙O于点D, ∴OD⊥PD, ∵BE⊥PC,...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网