题目内容

9.如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2015次,点A的落点依次为A1,A2,A3,…,则A2015的坐标为.(  )
A.(1343,0)B.(1347,0)C.(1343$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)D.(1347$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)

分析 连接AC,根据条件可以求出AC,由第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2015=335×6+5,因此点A5向右平移1340(即335×4)即可到达点A2015,根据点A5的坐标就可求出点A2015的坐标.

解答 解:连接AC,如图所示.
∵四边形OABC是菱形,
∴OA=AB=BC=OC.
∵∠ABC=60°,
∴△ABC是等边三角形.
∴AC=AB.
∴AC=OA.
∵OA=1,
∴AC=1.
根据第5次、第6次、第7次翻转后的图形.
由图可知:每翻转6次,图形向右平移4.
∵2015=335×6+5,
∴点A5向右平移1340(即335×4)到点A2014
∵A5的坐标为(3,0),
∴A2014的坐标为(3+1340,0),
∴A2015的坐标为(1343,0).

点评 本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网