题目内容

如图,在□ABCD中,E,F分别为边AB,CD的中点,连结DE,BF,BD.

(1)求证:△ADE≌△CBF.

(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.

(1)证明见解析;(2)菱形.理由见解析.

【解析】

试题分析:(1)根据题中已知条件不难得出,AD=BC,∠A=∠C,E、F分别为边AB、CD的中点,那么AE=CF,这样就具备了全等三角形判定中的SAS,由此可得出△AED≌△CFB.

(2)直角三角形ADB中,DE是斜边上的中线,因此DE=BE,又由DE=BF,FD∥BE那么可得出四边形BFDE是个菱形.

试题解析:(1)证明:在平行四边形ABCD中,∠A=∠C,AD=BC,

∵E、F分别为AB、CD的中点,

∴AE=CF.

在△AED和△CFB中,

∴△AED≌△CFB(SAS);

(2)【解析】
若AD⊥BD,则四边形BFDE是菱形.

证明:∵AD⊥BD,

∴△ABD是直角三角形,且∠ADB=90°.

∵E是AB的中点,

∴DE=AB=BE.

∵在ABCD中,E,F分别为边AB,CD的中点,

∴EB∥DF且EB=DF,

∴四边形BFDE是平行四边形.

∴四边形BFDE是菱形.

考点:1.全等三角形的判定;2.平行四边形的性质;3.菱形的判定.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网