题目内容

多边形的每一个内角都等于120°,则从此多边形一个顶点出发的对角线有


  1. A.
    5条
  2. B.
    4条
  3. C.
    3条
  4. D.
    2条
C
分析:多边形的每一个内角都等于120°,多边形的内角与外角互为邻补角,则每个外角是60度,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n-3,即可求得对角线的条数.
解答:∵多边形的每一个内角都等于120°,
∴每个外角是60度,
则多边形的边数为360°÷60°=6,
则该多边形有6个顶点,
则此多边形从一个顶点出发的对角线共有6-3=3条.
故选C.
点评:本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.同时考查了多边形的边数与对角线的条数的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网