题目内容
如图,在□ABCD的面积是12,点E,F在AC上,且AE=EF=FC,则△BEF的面积为 ( )
A. 6 B. 4 C. 3 D. 2
D
阅读下列材料:
问题:如图1,在□ABCD中,E是AD上一点,AE=AB,∠EAB=60°,过点E作直线
EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.
求证:EG =AG+BG.
小明同学的思路是:作∠GAH=∠EAB交GE于点H,构造全等三角形,经过推理使
问题得到解决.
参考小明同学的思路,探究并解决下列问题:
(1)完成上面问题中的证明;
(2)如果将原问题中的“∠EAB=60°”改为“∠EAB=90°”,原问题中的其它条件不变(如图2),请探究线段EG、AG、BG之间的数量关系,并证明你的结论.
图1 图2
如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,∠ADE=125°,则∠DBC的度数为( ) A.55° B.65° C.75° D.125°
已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4,求证:AD∥BE.
下列说法中错误的是 ( )
A.两条对角线互相平分的四边形是平行四边形;B.两条对角线相等的四边形是矩形;
C.两条对角线互相垂直的矩形是正方形;D.两条对角线相等的菱形是正方形
如图,,要使,则需要补充一个条件,这个条件可以是 .
计算:.
如图,平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别为(0,0),
(5,0)、(2,3),则顶点C的坐标是( ).
(A) (3,7) (B) (5,3) (C) (7,3) (D)(8,2)
如图,在平面直角坐标系xOy中,直线与轴交于点A(,0),与轴交于点B,且与直线:的交点为C(,4) .
(1)求直线的解析式;
(2)如果以点O,D,B,C为顶点的四边形是平行四边 形,直接写出点D的坐标;
(3)将直线沿y轴向下平移3个单位长度得到直线,点P(m,n)为直线上一动点,过点P作x轴的垂线, 分别与直线,交于M,N.当点P在线段MN上时,请直接写出m的取值范围.