题目内容

2.如图,P为线段AB上一点,AD与BC交于点E,∠CPD=∠A=∠B,BC交PD于点F,AD交PC于点G,则图中相似三角形有3对.

分析 先根据条件证明△PCF∽△BCP,利用相似三角形的性质:对应角相等,再证明△APD∽△PGD,进而证明△APG∽△BFP再证明时注意图形中隐含的相等的角.

解答 解:∵∠CPD=∠B,∠C=∠C,
∴△PCF∽△BCP.
∵∠CPD=∠A,∠D=∠D,
∴△APD∽△PGD.
∵∠CPD=∠A=∠B,∠APG=∠B+∠C,∠BFP=∠CPD+∠C
∴∠APG=∠BFP,
∴△APG∽△BFP.
则图中相似三角形有3对,
故答案为:3.

点评 本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网