题目内容

在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB交AB于点E,BC=30,BD:CD=3:2,则DE=
 
考点:角平分线的性质
专题:
分析:根据比例求出CD,再根据角平分线上的点到角的两边距离相等可得DE=CD.
解答:解:∵BC=30,BD:CD=3:2,
∴CD=30×
2
3+2
=12,
∵∠C=90°,AD平分∠BAC,DE⊥AB,
∴DE=CD=12.
故答案为:12.
点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网