题目内容

10.如图,在△ABC中,BD平分∠ABC交AC于D,EF垂直平分BD,分别交AB,BC,BD于E,F,G,连接DE,DF.
(1)求证:DE=DF;
(2)若∠ABC=30°,∠C=45°,DE=4,求CF的长.

分析 (1)只要证明四边形BFDE是菱形即可;
(2)在Rt△DFH中,求出DH、FH,在Rt△DHC中,求出CH即可解决问题;

解答 (1)证明:∵EF垂直平分BD,
∴EB=ED,FB=FD.
∵BD平分∠ABC交AC于D,
∴∠ABD=∠CBD.
∵∠ABD+∠BEG=90°,∠CBD+∠BFG=90°,
∴∠BEG=∠BFG.
∴BE=BF.
∴四边形BFDE是菱形.
∴DE=DF.

(2)解:过D作DH⊥CF于H.
∵四边形BFDE是菱形,
∴DF∥AB,DE=DF=4.
在Rt△DFH中,∠DFC=∠ABC=30°,
∴DH=2,FH=$\sqrt{3}$DH=2$\sqrt{3}$,
在Rt△CDH中,∠C=45°,
∴DH=HC=2,
∴CF=CH+FH=2+2$\sqrt{3}$.

点评 本题考查菱形的性质,解直角三角形,直角三角形的30度角性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网