题目内容

16.如图所示,在正方形ABCD中,E是CD上的任意一点,以AE为一边作∠EAF=45°,射线AF交BC于F点,连接EF,求证:EF=DE+BF.

分析 延长CB到G,使BG=DF,连接AG,证明△ABG≌△ADF,即可证得AG=AF,∠DAF=∠BAG,再证明△AEG≌△AEF,根据全等三角形的对应边相等即可得出结论.

解答 证明:延长CB到G,使BG=DF,连接AG.如图所示:
∵四边形ABCD是正方形,
∴AB=AD,∠ABE=∠D=90°,
∴∠ABG=90°=∠D,
∵△ABG和△ADF中,$\left\{\begin{array}{l}{AB=AD}\\{∠ABG=∠D}\\{BG=DF}\end{array}\right.$,
∴△ABG≌△ADF(SAS),
∴AG=AF,∠1=∠2,
又∵∠EAF=45°,∠DAB=90°,
∴∠2+∠3=45°,
∴∠1+∠3=45°,
∴∠GAE=∠EAF=45°.
在△AEG和△AEF中,$\left\{\begin{array}{l}{AG=AF}\\{∠GAE=∠EAF}\\{AE=AE}\end{array}\right.$,
∴△AEG≌△AEF(SAS),
∴GE=EF,
∵GE=BG+BE,DF=BG,
∴EF=DF+BF.

点评 本题考查了正方形的性质、全等三角形的判定与性质;正确作出辅助线,构造全等的三角形是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网