题目内容

19.如图,E为线段AB上一点,EC∥AD,DE∥BC,若S△EBC=1,S△ADE=3,则$\frac{AD}{EC}$=$\sqrt{3}$.

分析 证得△ADE∽△ECB,又由S△BEC=1,S△ADE=3,根据相似三角形的面积比等于相似比的平方,即可求得结果.

解答 解:∵EC∥AD,DE∥BC,
∴∠A=∠BEC,∠AED=∠B,
∴△ADE∽△ECB,
∵S△BEC=1,S△ADE=3,
∴$\frac{AD}{EC}$=$\frac{\sqrt{3}}{1}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 此题考查了相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网