题目内容

20.如图,在△ABC中,AB=6cm,AC=5cm,∠ABC与∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB,AC于点D,E,则△ADE的周长=11cm.

分析 根据角平分线的性质,可得∠DBO与∠OBC的关系,∠ECO与∠OCB的关系,根据平行线的性质,可得∠DOB与∠BOC的关系,∠EOC与∠OCB的关系,根据等腰三角形的判定,可得OD与BD的关系,OE与CE的关系,根据三角形的周长公式,可得答案.

解答 解:由∠ABC与∠ACB的平分线相交于点O,得
∠DBO=∠OBC,∠ECO=∠OCB.
由DE∥BC,得
∠DOB=∠BOC,∠EOC=∠OCB,
∠DOB=∠DBO,∠EOC=∠ECO,
∴DO=BD,OE=EC.
C△ADE=AD+DE+AE=AD+BD+AE+CE=AB+AC=11cm.
故答案为:11.

点评 本题考查了等腰三角形的判定与性质,利用等腰三角形的判定与性质是解题关键,又利用了角平分线的性质,平行线的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网