题目内容

如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
①AE=BF;②AE⊥BF;③AO=OE;④∠CEA=∠DFB;⑤S△AOB=S四边形DEOF
其中正确的结论有(  )
A、2个B、3个C、4个D、5个
考点:正方形的性质,全等三角形的判定与性质
专题:
分析:根据正方形的性质得AB=AD=DC,∠BAD=∠D=90°,则由CE=DF易得AF=DE,根据“SAS”可判断△ABF≌△DAE,所以AE=BF;
根据全等的性质得∠ABF=∠EAD,∠AFB=∠DEA,利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE⊥BF;
连结BE,BE>BC,BA≠BE,而BO⊥AE,根据垂直平分线的性质得到OA≠OE;
最后根据△ABF≌△DAE得S△ABF=S△DAE,则S△ABF-S△AOF=S△DAE-S△AOF,即S△AOB=S四边形DEOF
解答:解:∵四边形ABCD为正方形,
∴AB=AD=DC,∠BAD=∠D=90°,
而CE=DF,
∴AF=DE,
在△ABF和△DAE中
AB=DA
∠BAD=∠ADE
AF=DE

∴△ABF≌△DAE(SAS),
∴AE=BF,故①正确;
∴∠ABF=∠EAD,∠AFB=∠DEA,
∴∠CEA=∠DFB,故④正确;
而∠EAD+∠EAB=90°,
∴∠ABF+∠EAB=90°,
∴∠AOB=90°,
∴AE⊥BF,故②正确;
连结BE,
∵BE>BC,
∴BA≠BE,
而BO⊥AE,
∴OA≠OE,故③错误;
∵△ABF≌△DAE,
∴S△ABF=S△DAE
∴S△ABF-S△AOF=S△DAE-S△AOF
∴S△AOB=S四边形DEOF,故⑤正确.
综上所述,正确的结论有4个.
故选:C.
点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网