题目内容

18.已知方程组$\left\{\begin{array}{l}{mx+n=5}\\{my-n=1}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,则(m2-n2)的平方根是±$\sqrt{5}$.

分析 把$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$代入方程组$\left\{\begin{array}{l}{mx+n=5}\\{my-n=1}\end{array}\right.$,得出$\left\{\begin{array}{l}{m+n=5}\\{m-n=1}\end{array}\right.$,可得m2-n2=(m+n)(m-n)=5,即可求出(m2-n2)的平方根.

解答 解:∵方程组$\left\{\begin{array}{l}{mx+n=5}\\{my-n=1}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,
∴$\left\{\begin{array}{l}{m+n=5}\\{m-n=1}\end{array}\right.$,
∴m2-n2=(m+n)(m-n)=5,
∴(m2-n2)的平方根是±$\sqrt{5}$.

点评 本题主要考查了二元一次方程组的解和平方根,解题的关键是正确解方程组.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网