题目内容


如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接AD.

(1)求证:△CDE∽△CAD;

(2)若AB=2,AC=2,求AE的长.


(1)证明:∵AB是⊙O的直径,

∴∠ADB=90°,

∴∠B+∠BAD=90°,

∵AC为⊙O的切线,

∴BA⊥AC,

∴∠BAC=90°,即∠BAD+∠CAD=90°,

∴∠B=∠CAD,

∵OB=OD,

∴∠B=∠ODB,

而∠ODB=∠CDE,

∴∠B=∠CDE,

∴∠CAD=∠CDE,

而∠ECD=∠DCA,

∴△CDE∽△CAD;

(2)解:∵AB=2,

∴OA=1,

在Rt△AOC中,AC=2

∴OC==3,

∴CD=OC﹣OD=3﹣1=2,

∵△CDE∽△CAD,

=,即=

∴CE=

∴AE=AC﹣CE=2=


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网