题目内容

8.如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交$\widehat{AC}$于点F,交过点C的切线于点D.
(1)求证:DC=DP;
(2)若∠CAB=30°,当F是$\widehat{AC}$的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.

分析 (1)连接OC,根据切线的性质和PE⊥OE以及∠OAC=∠OCA得∠APE=∠DPC,然后结合对顶角的性质可证得结论;
(2)由∠CAB=30°易得△OBC为等边三角形,可得∠AOC=120°,由F是$\widehat{AC}$的中点,易得△AOF与△COF均为等边三角形,可得AF=AO=OC=CF,易得以A,O,C,F为顶点的四边形是菱形.

解答 (1)证明:连接OC,
∵∠OAC=∠ACO,PE⊥OE,OC⊥CD,
∴∠APE=∠PCD,
∵∠APE=∠DPC,
∴∠DPC=∠PCD,
∴DC=DP;

(2)解:以A,O,C,F为顶点的四边形是菱形;
∵∠CAB=30°,∴∠B=60°,
∴△OBC为等边三角形,
∴∠AOC=120°,
连接OF,AF,
∵F是$\widehat{AC}$的中点,
∴∠AOF=∠COF=60°,
∴△AOF与△COF均为等边三角形,
∴AF=AO=OC=CF,
∴四边形OACF为菱形.

点评 本题主要考查了切线的性质、圆周角定理和等边三角形的判定等,作出恰当的辅助线利用切线的性质是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网