题目内容

3.如图:已知两直线l1和l2相交于点A(4,3),且OA=OB,则点B的坐标为(0,-5).

分析 先用勾股定理求出OA的长,再根据OA=OB可求出B的坐标.

解答 解:∵A(4,3),
∴OA=$\sqrt{{4}^{2}+{3}^{2}}$=5.
∵OA=OB,
∴B(0,-5).
故答案为:(0,-5).

点评 本题考查的是两条直线相交问题,熟知勾股定理是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网