题目内容

如图,△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,M为DE的中点.过点E作与AD平行的直线,交射线AM于点N.

(1)当A,B,C三点在同一条直线上时(如图1),求证:M为AN中点.

(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一条直线上时(如图2),求证:△CAN为等腰直角三角形.

(3)将图1中的△BCE绕点B旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.

(1)证明见解析;(2)证明见解析;(3)△CAN仍为等腰直角三角形,证明见解析. 【解析】试题分析:(1)由EN∥AD和点M为DE的中点可以证到△ADM≌△NEM,从而证到M为AN的中点. (2)易证AB=DA=NE,∠ABC=∠NEC=135°,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形. (3)延长AB交...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网