题目内容
4.(1)求证:OE=CD;
(2)若菱形ABCD的边长为4,∠ABC=60°,求AE的长.
分析 (1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,可得OE=CD即可;
(2)根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.
解答 (1)证明:在菱形ABCD中,OC=$\frac{1}{2}$AC.
∴DE=OC.
∵DE∥AC,
∴四边形OCED是平行四边形.
∵AC⊥BD,
∴平行四边形OCED是矩形.
∴OE=CD.
(2)解:在菱形ABCD中,∠ABC=60°,
∴AC=AB=4,
∴在矩形OCED中,
CE=OD=$\sqrt{A{D}^{2}-A{O}^{2}}$=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$.
在Rt△ACE中,
AE=$\sqrt{A{C}^{2}+C{E}^{2}}$=2$\sqrt{7}$.
点评 本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.
练习册系列答案
相关题目
14.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是( )
| A. | 200元 | B. | 240元 | C. | 320元 | D. | 360元 |
15.
某鲜花销售部在春节前20天内销售一批鲜花.其中,该销售部公司的鲜花批发部日销售量y1(万朵)与时间x(x为整数,单位:天)关系为二次函数,部分对应值如表所示.
与此同时,该销售部还通过某网络电子商务平台销售鲜花,网上销售日销售量y2(万朵)与时间x(x为整数,单位:天) 的函数关系如图所示.
(1)求y1与x的二次函数关系式及自变量x的取值范围;
(2)求y2与x的函数关系式及自变量x的取值范围;
(3)当8≤x≤20时,设该花木公司鲜花日销售总量为y万朵,写出y与时间x的函数关系式,并判断第几天日销售总量y最大,并求出此时的最大值.
| 时间x(天) | 0 | 4 | 8 | 12 | 16 | 20 |
| 销量y1(万朵) | 0 | 16 | 24 | 24 | 16 | 0 |
(1)求y1与x的二次函数关系式及自变量x的取值范围;
(2)求y2与x的函数关系式及自变量x的取值范围;
(3)当8≤x≤20时,设该花木公司鲜花日销售总量为y万朵,写出y与时间x的函数关系式,并判断第几天日销售总量y最大,并求出此时的最大值.
19.
如图,矩形ABCD中,AB=1,∠AOB=60°,则BC=( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
9.(-8)2的立方根是( )
| A. | 4 | B. | -4 | C. | 8 | D. | -8 |