题目内容

10.解方程组:
(1)$\left\{\begin{array}{l}{3x-4y=5}\\{x+3y=6}\end{array}\right.$            
(2)$\left\{\begin{array}{l}{x-y-5z=4}\\{2x+y-3z=10}\\{3x+y+z=8}\end{array}\right.$.

分析 (1)应用加减消元法或代入消元法先消去x,求出y的值,然后代入①或②求出y的值即可.
(2)是三元一次方程组,应用加减消元法先消去未知数y,将三元一次方程组转化为二元一次方程组,然后再与(1)同法解之.

解答 解:(1)$\left\{\begin{array}{l}{3x-4y=5}&{①}\\{x+3y=6}&{②}\end{array}\right.$
②×3-①得:y=1
把y=1代入②,得:x=3
经检验,原方程组的解为:$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$
(2 )$\left\{\begin{array}{l}{x-y-5z=4}&{①}\\{2x+y-3z=10}&{②}\\{3x+y+z=8}&{③}\end{array}\right.$
①+②,③-②得:$\left\{\begin{array}{l}{3x-8z=14}&{(4)}\\{x+4z=-2}&{(5)}\end{array}\right.$
(5)×3-(4)得:$\left\{\begin{array}{l}{x=2}\\{z=-1}\end{array}\right.$
把$\left\{\begin{array}{l}{x=2}\\{z=-1}\end{array}\right.$代入③得:y=3
经检验:$\left\{\begin{array}{l}{x=2}\\{y=3}\\{z=-1}\end{array}\right.$是原方程组的解.

点评 本题考查了解三元一次方程组与解二元一次方程组,解题的关键是消元,即把二元一次方程组转化为一元一次方程、把三元一次方程组转化为二元一次方程组来求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网