ÌâÄ¿ÄÚÈÝ
6£®Èçͼ¢Ù£¬ÒÑÖªÕý·½ÐÎABCDµÄ±ß³¤Îª2£¬°ëÔ²OµÄÖ±¾¶ÎªCD£¬µãE´ÓA³ö·¢ÒÔÿÃë1¸öµ¥Î»³¤¶ÈÏòDÔ˶¯£¬µãF´ÓC³ö·¢ÒÔÿÃë2¸öµ¥Î»³¤¶ÈÏòBÔ˶¯£¬µ±µãFÔ˶¯µ½µãBʱ£¬µãEÒ²ËæÖ®Í£Ö¹Ô˶¯£¬ÉèÔ˶¯µÄʱ¼äΪtÃ룮£¨1£©µ±EFÓë°ëÔ²OÏàÇÐʱ£¬ÇótµÄÖµ£»
£¨2£©Èçͼ¢Ú£¬µãPÊÇEFµÄÖе㣬µãQÊÇ¡÷PDCµÄÍâÐÄ£®
¢Ùµ±t=$\frac{4}{5}$ʱ£¬ÇóPQµÄ³¤£»
¢ÚÖ±½Óд³öµãQÔ˶¯Â·Ïߵij¤£®
·ÖÎö £¨1£©Èçͼ1ÖУ¬ÉèÖ±ÏßEFÓë¡ÑOÏàÇÐÓÚµãK£®×÷FM¡ÍADÓÚM£®ÔòËıßÐÎCDMFÊǾØÐΣ¬Ò×ÖªED=EK=2-t£¬FC=FK=2t£¬ÍƳöEF=2+t£¬EM=2-t-2t=2-3t£¬FM=CD=2£¬ÔÚRt¡÷EFMÖУ¬¸ù¾ÝEF2=FM2+EM2£¬Áгö·½³Ì¼´¿É½â¾öÎÊÌ⣻
£¨2£©¢ÙÈçͼ2ÖУ¬µ±t=$\frac{4}{5}$ʱ£¬AE=$\frac{4}{5}$£¬CF=$\frac{8}{5}$£¬ED=2-$\frac{4}{5}$=$\frac{6}{5}$£¬ÓÉËıßÐÎCDEFÊÇÖ±½ÇÌÝÐΣ¬¸ù¾ÝOP=$\frac{DE+CF}{2}$£¬Çó³öOP£¬ÔÙ¸ù¾ÝÍâÐĵÄÐÔÖʼ´¿É½â¾öÎÊÌ⣮QÊÇ¡÷PDCµÄÍâÐÄ£¬µÃ³öPQ=$\frac{2}{3}$OP£®
¢ÚÇó³öÆðʼλÖÃʱ¡¢ÖÕֹλÖÃʱQOµÄ³¤¼´¿É½â¾öÎÊÌ⣻
½â´ð ½â£º£¨1£©Èçͼ1ÖУ¬ÉèÖ±ÏßEFÓë¡ÑOÏàÇÐÓÚµãK£®×÷FM¡ÍADÓÚM£®ÔòËıßÐÎCDMFÊǾØÐΣ¬![]()
Ò×ÖªED=EK=2-t£¬FC=FK=2t£¬
¡àEF=2+t£¬EM=2-t-2t=2-3t£¬FM=CD=2£¬
ÔÚRt¡÷EFMÖУ¬¡ßEF2=FM2+EM2£¬
¡à£¨2+t£©2=22+£¨2-3t£©2£¬
¡àt=$\frac{1}{4}$»ò1£¨ÉáÆú£©£¬
¡ßt=$\frac{1}{4}$sʱ£¬Ö±ÏßEFÓë¡ÑOÏàÇУ®
£¨2£©¢ÙÈçͼ2ÖУ¬µ±t=$\frac{4}{5}$ʱ£¬AE=$\frac{4}{5}$£¬CF=$\frac{8}{5}$£¬ED=2-$\frac{4}{5}$=$\frac{6}{5}$![]()
¡ßËıßÐÎCDEFÊÇÖ±½ÇÌÝÐΣ¬
ÓÖ¡ßEP=PF£¬DO=OC£¬
¡àOP=$\frac{DE+CF}{2}$=$\frac{7}{5}$£¬
¡ßQÊÇ¡÷PDCµÄÍâÐÄ£¬
¡àPQ=$\frac{2}{3}$OP=$\frac{14}{15}$£®
¢ÚÈçͼ3ÖУ¬![]()
µ±µãFÔ˶¯µ½ÓëBÖØºÏʱ£¬OP=$\frac{3}{2}$£¬OQ=$\frac{1}{3}$OP=$\frac{1}{2}$£¬
µ±ÆðʼλÖÃʱ£¬OQ=$\frac{1}{3}$£¬
¡àµãQµÄÔ˶¯Â·¾¶Îª$\frac{1}{2}$-$\frac{1}{3}$=$\frac{1}{6}$£®
µãÆÀ ±¾Ì⿼²éÔ²×ÛºÏÌâ¡¢ÇÐÏßµÄÅж¨ºÍÐÔÖÊ¡¢¹´¹É¶¨Àí¡¢Ö±½ÇÌÝÐεÄÐÔÖÊ£®Èý½ÇÐεÄÍâÐĵÄÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»áÌí¼Ó³£Óø¨ÖúÏߣ¬¹¹ÔìÖ±½ÇÈý½ÇÐνâ¾öÎÊÌ⣬Áé»îÔËÓÃËùѧ֪ʶ½â¾öÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮
| A£® | 1 | B£® | 2 | C£® | 4 | D£® | 8 |
| A£® | 90¡ã+$\frac{1}{2}$¦Á | B£® | $\frac{1}{2}¦Á$-90¡ã | C£® | $\frac{1}{2}¦Á$ | D£® | 540¡ã$-\frac{1}{2}¦Á$ |
| A£® | Ò»¶¨ÊÇÆ½ÐÐËıßÐÎ | B£® | Ò»¶¨ÊÇÁâÐÎ | ||
| C£® | Ò»¶¨ÊǾØÐÎ | D£® | Ò»¶¨ÊÇÕý·½ÐÎ |