题目内容
若b2=ac,求| a2b2c2 |
| a3+b3+c3 |
| 1 |
| a3 |
| 1 |
| b3 |
| 1 |
| c3 |
分析:先将
(
+
+
)通过对(
+
+
)通分转化为
×
,再将b2=ac(即ac=b2)代入约分化简,约去公因式.最终的值为1
| a2b2c2 |
| a3+b3+c3 |
| 1 |
| a3 |
| 1 |
| b3 |
| 1 |
| c3 |
| 1 |
| a3 |
| 1 |
| b3 |
| 1 |
| c3 |
| a2b2c2 |
| a3+b3+c3 |
| b3c3+a3c3+a3b3 |
| a3b3c3 |
解答:解:
(
+
+
),
=
×
,
=
×
,
=
×
,
=
,
=
,
=1.
故答案为1.
| a2b2c2 |
| a3+b3+c3 |
| 1 |
| a3 |
| 1 |
| b3 |
| 1 |
| c3 |
=
| a2b2c2 |
| a3+b3+c3 |
| b3c3+a3c3+a3b3 |
| a3b3c3 |
=
| a2b2c2 |
| a3+b3+c3 |
| b3c3+b6+a3b3 |
| a3b3c3 |
=
| 1 |
| a3+b3+c3 |
| b3(c3+b3+a3) |
| abc |
=
| b3 |
| abc |
=
| abc |
| abc |
=1.
故答案为1.
点评:同学们要注意,化简分式方程的过程中一定要有效利用通分、约分.本题再加上b2=ac这个已知条件,可以说是对通分、约分运用的典型.
练习册系列答案
相关题目