题目内容
5.①S1+S3=S2+S4
②如果S4>S2,则S3>S1
③若S3=2S1,则S4=2S2
④若S1-S2=S3-S4,则P点一定在对角线BD上.
其中正确的结论的序号是①④(把所有正确结论的序号都填在横线上).
分析 根据平行四边形的对边相等可得AB=CD,AD=BC,设点P到AB、BC、CD、DA的距离分别为h1、h2、h3、h4,然后利用三角形的面积公式列式整理即可判断出①正确;根据三角形的面积公式即可判断②③错误;根据已知进行变形,求出S1+S4=S2+S3=S△ABD=S△BDC=$\frac{1}{2}$S平行四边形ABCD,即可判断④.
解答 解:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
设点P到AB、BC、CD、DA的距离分别为h1、h2、h3、h4,
则S1=$\frac{1}{2}$ABh1,S2=$\frac{1}{2}$BCh2,S3=$\frac{1}{2}$CDh3,S4=$\frac{1}{2}$ADh4,
∵$\frac{1}{2}$ABh1+$\frac{1}{2}$CDh3=$\frac{1}{2}$AB•hAB,$\frac{1}{2}$BCh2+$\frac{1}{2}$ADh4=$\frac{1}{2}$C•hBC,
又∵S平行四边形ABCD=AB•hAB=BC•hBC
∴S2+S4=S1+S3,故①正确;
根据S4>S2只能判断h4>h2,不能判断h3>h1,即不能得出S3>S1,∴②错误;
根据S3=2S1,能得出h3=2h1,不能推出h4=2h2,即不能推出S4=2S2,∴③错误;
∵S1-S2=S3-S4,
∴S1+S4=22+S3=$\frac{1}{2}$S平行四边形ABCD,
此时S1+S4=S2+S3=S△ABD=S△BDC=$\frac{1}{2}$S平行四边形ABCD,
即P点一定在对角线BD上,
∴④正确;
故答案为:①④.
点评 本题考查了平行四边形的性质,三角形的面积,以及平行四边形对角线上点的判定的应用,用平行四边形的面积表示出相对的两个三角形的面积的和是解题的关键,也是本题的难点.